56 research outputs found

    Extended Differential Aggregations in Process Algebra for Performance and Biology

    Get PDF
    We study aggregations for ordinary differential equations induced by fluid semantics for Markovian process algebra which can capture the dynamics of performance models and chemical reaction networks. Whilst previous work has required perfect symmetry for exact aggregation, we present approximate fluid lumpability, which makes nearby processes perfectly symmetric after a perturbation of their parameters. We prove that small perturbations yield nearby differential trajectories. Numerically, we show that many heterogeneous processes can be aggregated with negligible errors.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Spatial Fluid Limits for Stochastic Mobile Networks

    Full text link
    We consider Markov models of large-scale networks where nodes are characterized by their local behavior and by a mobility model over a two-dimensional lattice. By assuming random walk, we prove convergence to a system of partial differential equations (PDEs) whose size depends neither on the lattice size nor on the population of nodes. This provides a macroscopic view of the model which approximates discrete stochastic movements with continuous deterministic diffusions. We illustrate the practical applicability of this result by modeling a network of mobile nodes with on/off behavior performing file transfers with connectivity to 802.11 access points. By means of an empirical validation against discrete-event simulation we show high quality of the PDE approximation even for low populations and coarse lattices. In addition, we confirm the computational advantage in using the PDE limit over a traditional ordinary differential equation limit where the lattice is modeled discretely, yielding speed-ups of up to two orders of magnitude

    Fluid aggregations for Markovian process algebra

    Get PDF
    Quantitative analysis by means of discrete-state stochastic processes is hindered by the well-known phenomenon of state-space explosion, whereby the size of the state space may have an exponential growth with the number of objects in the model. When the stochastic process underlies a Markovian process algebra model, this problem may be alleviated by suitable notions of behavioural equivalence that induce lumping at the underlying continuous-time Markov chain, establishing an exact relation between a potentially much smaller aggregated chain and the original one. However, in the modelling of massively distributed computer systems, even aggregated chains may be still too large for efficient numerical analysis. Recently this problem has been addressed by fluid techniques, where the Markov chain is approximated by a system of ordinary differential equations (ODEs) whose size does not depend on the number of the objects in the model. The technique has been primarily applied in the case of massively replicated sequential processes with small local state space sizes. This thesis devises two different approaches that broaden the scope of applicability of efficient fluid approximations. Fluid lumpability applies in the case where objects are composites of simple objects, and aggregates the potentially massive, naively constructed ODE system into one whose size is independent from the number of composites in the model. Similarly to quasi and near lumpability, we introduce approximate fluid lumpability that covers ODE systems which can be aggregated after a small perturbation in the parameters. The technique of spatial aggregation, instead, applies to models whose objects perform a random walk on a two-dimensional lattice. Specifically, it is shown that the underlying ODE system, whose size is proportional to the number of the regions, converges to a system of partial differential equations of constant size as the number of regions goes to infinity. This allows for an efficient analysis of large-scale mobile models in continuous space like ad hoc networks and multi-agent systems

    From Electric Circuits to Chemical Networks

    Full text link
    Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is useful to biological organisms, where it is implemented by a completely different set of discrete components (typically proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical networks

    Refined theory of packages

    Get PDF
    The fluid approximation for PEPA usually considers large populations of simple interacting sequential components characterised by small local state spaces. A natural question which arises is whether it is possible to extend this technique to composite processes with arbitrary large local state spaces. In [1] the authors were able to give a positive answer for a certain class of models. The current paper will enlarge this class

    Forward and Backward Bisimulations for Chemical Reaction Networks

    Get PDF
    We present two quantitative behavioral equivalences over species of a chemical reaction network (CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation identifies a partition where each equivalence class represents the exact sum of the concentrations of the species belonging to that class. Backward CRN bisimulation relates species that have the identical solutions at all time points when starting from the same initial conditions. Both notions can be checked using only CRN syntactical information, i.e., by inspection of the set of reactions. We provide a unified algorithm that computes the coarsest refinement up to our bisimulations in polynomial time. Further, we give algorithms to compute quotient CRNs induced by a bisimulation. As an application, we find significant reductions in a number of models of biological processes from the literature. In two cases we allow the analysis of benchmark models which would be otherwise intractable due to their memory requirements.Comment: Extended version of the CONCUR 2015 pape

    A computational approach to steady-state convergence of fluid limits for Coxian queuing networks with abandonment

    Get PDF
    Many-server queuing networks with general service and abandonment times have proven to be a realistic model for scenarios such as call centers and health-care systems. The presence of abandonment makes analytical treatment difficult for general topologies. Hence, such networks are usually studied by means of fluid limits. The current state of the art, however, suffers from two drawbacks. First, convergence to a fluid limit has been established only for the transient, but not for the steady state regime. Second, in the case of general distributed service and abandonment times, convergence to a fluid limit has been either established only for a single queue, or has been given by means of a system of coupled integral equations which does not allow for a numerical solution. By making the mild assumption of Coxian-distributed service and abandonment times, in this paper we address both drawbacks by establishing convergence in probability to a system of coupled ordinary differential equations (ODEs) using the theory of Kurtz. The presence of abandonments leads in many cases to ODE systems with a global attractor, which is known to be a sufficient condition for the fluid and the stochastic steady state to coincide in the limiting regime. The fact that our ODE systems are piecewise affine enables a computational method for establishing the presence of a global attractor, based on a solution of a system of linear matrix inequalities

    Approximate reduction of heterogenous nonlinear models with differential hulls

    Get PDF
    We present a model reduction technique for a class of nonlinear ordinary differential equation (ODE) models of heterogeneous systems, where heterogeneity is expressed in terms of classes of state variables having the same dynamics structurally, but which are characterized by distinct parameters. To this end, we first build a system of differential inequalities that provides lower and upper bounds for each original state variable, but such that it is homogeneous in its parameters. Then, we use two methods for exact aggregation of ODEs to exploit this homogeneity, yielding a smaller model of size independent of the number of heterogeneous classes. We apply this technique to two case studies: a multiclass queuing network and a model of epidemics spread

    PID Control of Biochemical Reaction Networks

    Full text link
    Principles of feedback control have been shown to naturally arise in biological systems and successfully applied to build synthetic circuits. In this work we consider Biochemical Reaction Networks (CRNs) as a paradigm for modelling biochemical systems and provide the first implementation of a derivative component in CRNs. That is, given an input signal represented by the concentration level of some species, we build a CRN that produces as output the concentration of two species whose difference is the derivative of the input signal. By relying on this component, we present a CRN implementation of a feedback control loop with Proportional-Integral-Derivative (PID) controller and apply the resulting control architecture to regulate the protein expression in a microRNA regulated gene expression model.Comment: 8 Pages, 4 figures, Submitted to CDC 201
    • …
    corecore